edexcel ㅃ̈ㅊ

Mark Scheme (results)
Summer 2014

Pearson Edexcel GCSE
in Chemistry ($5 \mathrm{CH} 2 \mathrm{~F} / 01$)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG039992
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- For questions worth more than one mark, the answer column shows how partial credit can be allocated. This has been done by the inclusion of part marks eg (1).
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- Write legibly, with accurate spelling, grammar and punctuation in order to make the meaning clear
- Select and use a form and style of writing appropriate to purpose and to complex subject matter
- Organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	D the transition metals		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	D malleable		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i)}$	non-flammable		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (b) (i i)}$	has a low density		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (c) (\mathbf { i })}$	A description including	(yellow-) green (1)	any shade of green do not allow just 'yellow' do not allow green in combination with other colours eg blue-green

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	hydrogen + chlorine \rightarrow hydrogen chloride Ihs (1) rhs (1) Ignore formulae in addition to all of the names	if formulae are used, do not allow h or CL or superscripts $\mathrm{H}_{2}+\mathrm{Cl}_{2}$ on Ihs 2 HCl on rhs reactants in either order do not allow a mixture of words and formulae for both marks eg $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow$ hydrogen chloride scores 1 mark for rhs do not allow hydrochloric acid /hydrochloride/hydrogen chlorine	(2)

(Total for Question 1 = 8 marks)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	A metal		$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	Any one of Li B C N O F Ne Ignore numbers with the symbols eg $_{3} \mathrm{Li}$		(1)

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	4 (protons) (1) 4 (electrons) (1) 5 (neutrons) (1)		
			(3)

Question Number	Answer	Acceptable answers	Mark
2(b)(ii)	C -1		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	An explanation linking 5 electrons (1)	it has 5 \{outer/valence\} electrons fully correct diagram showing electronic configuration and electron(s) labelled the group (number) is the number of electrons in the outer shell (in the) \{outer/last/final/end\} \{shell/energy level\} (1)	rbit/ring for shell fully correct diagram showing electronic configuration without labelled electron OR 5 in the \{outer/last\} \{shell / energy level\} do not allow just ‘5 at the end' do not award the first mark if proton/neutron/atom (in the outer shell)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a)}$	C precipitation		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (b)}$	copper carbonate (s)(1) sodium nitrate (aq)(1)		(2)

Question Number	Answer	Acceptable answers	Mark
3(c)	CuCO_{3} Ignore any 'balancing' number in front of CuCO Inore any working to find the formula $(\mathrm{Cu})^{2+}\left(\mathrm{CO}_{3}\right)^{2-} /\left(\mathrm{Cu}^{2+}\right)\left(\mathrm{CO}_{3}{ }^{2-}\right)$	do not allow superscript 3 ie CuCO^{3} do not allow $\mathrm{Cu}(\mathrm{CO})_{3}$	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (e) (i)}$	potassium / K^{+}	K	$\mathbf{(1)}$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (e) (i i)}$	chloride / Cl^{-}	chlorine (ion) / Cl do not allow Cl_{2}	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (i)}$	$\underline{\mathbf{2} N a(1)+\mathrm{Cl}_{2} \rightarrow \underline{\mathbf{2} \mathrm{NaCl}(1)}}$maximum 1 mark if any balancing number is added in front of Cl_{2} or if any of the formulae are changed eg $4 \mathrm{Na}+2 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{NaCl}$ or $\mathrm{Na}+1 / 2 \mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$ score (1) front of the 2s 	do not allow negative signs in front of balancing numbers	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (\text { ii })}$	$\frac{2.5}{4.0}$ (1)	0.625 or $5 / 8$ their fraction $\times 100$ $(1)(=62.5)$	$62.5 / 63$ with $\{$ no/incorrect $\}$ working correct working with $\{$ no/wrong \}

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (\text { iii })}$	A ionic		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a) (\text { iv) }}$	$23+35.5(=58.5)$	58.5 with \{no/incorrect\} working $23+35.5$ with \{no/wrong\} answer Ignore g not allow $58 / 59$ without working	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)	$\frac{24}{120}$	$1 / 5$ or 0.2	
	$\begin{align*} & \text { their fraction } \times 100 \tag{1}\\ & (=20 \%) \end{align*}$	20 with $\{$ no/incorrect $\}$ working	
		correct working with $\{$ no/wrong $\}$ answer	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (c) (i)}$	CH_{3}	$2 \mathrm{CH}_{3} / \mathrm{C}_{1} \mathrm{H}_{3} / \mathrm{H}_{3} \mathrm{C}$ do not allow just $1: 3$	(1)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	An explanation linking any two from weak \{forces/attractions $\}$ (1) between \{molecules/particles/them \}/ intermolecular (1) little \{heat/energy\} needed \{to separate the molecules/overcome force(s) between molecules $\}$ (1)	maximum 1 mark if breaking bonds between atoms/breaking down \{molecules/ particles\}/breaking covalent bonds specific weak forces eg Van der Waals/London weak bonds do not allow covalent bonds are weak / weak bonds between atoms ignore weak hydrogen bonds weak bonds between \{molecules / particles $\}$ do not allow intramolecular 'little energy is needed to break the bonds' only if it is clear that \{covalent/single\} bonds are not being broken	(2)

(Total for Question 4 = 11 marks)

Question Number	Answer	Acceptable answers	Mark
5(a)(i)	A description including carbon (1) atom(s) (1)		

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	covalent		(1)
	Ignore giant molecular		

Question Number	Answer	Acceptable answers	Mark
5(b)	fractional distillation (2)	distillation fractionation	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (c)}$	A 0.25		(1)

Question Number		Indicative Content	Mark
QWC	*5(d)	A description/explanation including some of the following points content could be shown in diagram(s) practical procedure - ignite magnesium /put magnesium in (Bunsen) flame - use of tongs/crucible / tube or gas jar of \{oxygen/air\} - lift lid (to let air in)- if crucible used - magnesium burns/oxidises/exothermic reaction - (bright) white \{flame/light\} - white powder/ash/solid formed bonding - magnesium atoms have 2 electrons in the outer shell - magnesium atoms \{lose/transfer\} electrons - form Mg^{2+} /ions with positive charge - oxygen atoms have 6 electrons in the outer shell - oxygen atoms gain electrons - forms $\mathrm{O}^{2 \%}$ ions with negative charge - \{8 electrons in /full/complete\} outer shell - two electrons transferred/gained/lost - ions with opposite charges attract each other/ Mg^{2+} attracts O^{2-} ions	(6)
Level	0	No rewardable content	
1	1-2	- a limited description e.g. magnesium burns / magnesium atom electrons - the answer communicates ideas using simple language and us limited scientific terminology - spelling, punctuation and grammar are used with limited accur	
2	3-4	- a simple description e.g. magnesium burns with a white flame magnesium forms positive ions and oxygen forms negative ion - the answer communicates ideas showing some evidence of cla organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	and
3	5-6	- a detailed description including the experiment and bonding e.g magnesium burns with a white flame, magnesium atoms give outer electrons to oxygen atoms - the answer communicates ideas clearly and coherently uses a scientific terminology accurately - spelling, punctuation and grammar are used with few errors	ir 2 ge of

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i)}$	An explanation linking \{the temperature/it $\}$ \{increased $/ \quad$ went up (by $\left.\left.26^{\circ} \mathrm{C}\right)\right\}(1)$	it got hotter/it gets hot heat (energy) \{released /given out $\}$ ignore incorrect temperature rise do not allow just 'heat increases'	
(so the reaction is) exothermic (1)		(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (\text { (ii) }}$	ZnSO_{4} (1) $\mathrm{Cu}(1)$ allow formulae in either order maximum if additional formulae are included maximum if balancing numbers added do not allow upper case N /superscript 4		

Question Number	Answer	Acceptable answers	Mark
6(b)	An explanation linking	Rirst mark - relating concentration to time (as the concentration/amount of acid increases) the time (taken related time and rate to for the magnesium to react) decreasing concentration of acid	\{less/shorter\} time
lgnore any reference to negative correlation Ignore time gets faster/quicker Second mark - effect on rate	(so) \{ the rate/it increases/reaction becomes \{faster/quicker \} (1)		(2)

Question Number		Indicative Content	Mark
QWC	* 6(c)	A description including some of the following points Experiment 1 - measure volume of acid/stated volume - measure mass of marble chips/stated mass - add acid to marble or marble to acid in a suitable container eg flask, beaker, boiling tube, test tube - collect the gas in a \{gas syringe/measuring cylinder over water/ tube over water\}/bubble gas through limewater/bubble gas through water - measure \{amount/volume\} of carbon dioxide/count the bubbles/fixed volume of carbon dioxide - measure mass/mass loss (on a balance) - time/measure how long the reaction takes Experiment 2 - do another experiment with different size marble chips - use the same mass of marble chips - use the same \{volume/concentration/mass\} of acid/same acid - crush the marble/use powdered marble Results - smaller chips (of marble) have a more vigorous reaction/produce more \{fizzing/bubbles\} ORA - smaller chips take less time to \{react/produce a certain volume of gas / have a certain mass loss\} ORA - smaller chips have a larger surface area ORA - smaller chips react faster ORA - larger surface gives a faster reaction	(6)
Level	0	No rewardable content	
1	1-2	- a limited description e.g. crush the marble chips/smaller marble give more fizzing - the answer communicates ideas using simple language and uses scientific terminology - spelling, punctuation and grammar are used with limited accura	ps mited
2	3-4	- a simple description e.g. put marble chips and acid in a flask and repeat with the same mass of small marble chips / collect the gas syringe, smaller pieces of marble react faster - the answer communicates ideas showing some evidence of clarity organisation and uses scientific terminology appropriately - spelling, punctuation and grammar are used with some accuracy	in a and
3	5-6	- a detailed description e.g. put marble chips and acid in a flask, the experiment with the same mass of crushed marble, crushed takes less time to react - the answer communicates ideas clearly and coherently uses a ran scientific terminology accurately - spelling, punctuation and grammar are used with few errors	peat marble ge of

